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Figure 7. HnRNP F/H serves as a frans-splicing repressor; validation of AAGAA as a binding motif of hnRNP F/H in SUTR. (A) Schematic
representation of the luciferase minigene carrying the 5 and 3" UTR of the multidrug resistance protein A (Tb927.8.2160). The ‘wild luciferase’
minigene consists of the SUTR of the gene and ‘mut luciferase’ carries mutation as indicated. Both luciferase minigenes carry 759 nt long 3’UTR of
Tb927.8.2160. Genomic coordinates are with respect to ATG (5" UTR) and stop codon for 3’UTR. (B) Base substitutions used to generate the mutation
in 5UTR. The sequence of the domain carrying the mutations is boxed, and the base substitutions used to generate the mutation are depicted. (C) Role
of hnRNP F/H in trans-splicing. (a) RNase protection of the luciferase fused transcript carrying the wild-type and mutated 5UTRs. Expression was
monitored in hnRNP F/H cells after 2.5 days of silencing by RNase protection assay. The protected fragments were separated on a 6% acrylamide-7 M
urea gel. P indicates probe; C, control (no RNA was added to the RNase protection assay). Primer extension of U3 was used as control. (b) Schematic
representation of the probe used for RNase protection assay in (a). Genomic coordinates of the probe are shown (=77 to +77, with respect to luciferase
ATG to give a protected fragment of 154 nt). (c) Quantitative analysis of the mature luciferase fused transcript in (a). Quantitative analysis shows the
percentage increase (with respect to amount in Tet- cells) in the level of mature fused-luciferase transcript (indicated in figure as mature)”, based on
three independent experiments. The results were normalized to the level of U3 snoRNA. (D) (a) Northern analysis to detect the pre-mRNA of
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Figure 8. HnRNP F/H protein is cross-linked to a transcript carrying the AAGAA site and to any RNA oligonucleotide coding for the two putative
binding sites. (A) Schematic representation of the probes used for cross-linking. (B) Cross-linking using PCF extract. Cross-linking was performed as
described in ‘Materials and Methods’ section, using whole cell extracts (15ug per reaction) of PCF extract and in the presence of (lanes 1-4)
increasing amounts of unlabelled 365-wild AATP11 transcripts (0, 50, 200 and 500 ng, respectively). Lanes 5-7 show increasing amounts of non-
radioactive 365-mut AATPI1 transcripts carrying the AAGAA mutation (50, 200 and 500 ng, respectively). Lane 8, a portion of the gel was subjected
to western analysis with anti hnRNP F/H antibodies. The size of the protein marker is indicated. (C) Cross-linking using BSF extract. Extract (0.7 ug
per lane) was cross-linked to the same substrates as in (B). (a) oligonucleotide (5-AAGAAAAGAA-3) (40000 cpm) was end labelled at the 5" end
with [y-*P]-ATP and was incubated with extracts in the absence (lane 1) or after UV irradiation (lane 2), (b). BSF extract (0.7 pg per lane) was cross-
linked to (lanes 1-4) increasing amounts of unlabelled 365-wild AATPI11 transcripts (0, 50, 150, and 200 ng, respectively). Lanes 5-7 show increasing
amounts of non-radioactive 365-mut AATPI11 transcripts carrying the AAGAA mutation (50, 150 and 200 ng, respectively). Lane 8, a portion of the
gel was subjected to western analysis with anti hnRNP F/H antibodies.

Figure 7. Continued

Tb927.8.2160-luciferase fused transcript of wild-type and mutated 5UTRs. Northern analysis was with an RNA probe specific to the pre-mRNA.
The level of 7SL RNA was used as a control for the amount of RNA. (b) Schematic representation of the probe used for northern analysis in (a).
Genomic coordinates of the probe are shown (—400 to —201). (c¢) Quantitative analysis of the precursor luciferase fused transcript in (a). Quantitative
analysis shows the percentage decrease/increase in the level of pre-fused transcript (indicated in figure as precursor), based on three independent
experiments. The levels of pre-fused -luciferase transcripts are given as percentage increase with respect to the amount present in Tet-, and were
normalized to the level of U3 snoRNA. (E) mRNA stability assay. Uninduced and hnRNP F/H silenced cells carrying wild-type fused-luciferase
transcript (2.5 days after induction) essentially as described in Figure 4. RNA was prepared, separated on a 1.2% agarose-formaldehyde gel and
subjected to northern analysis with the luciferase RNA probes. The 7SL RNA was used to control for equal loading. The half-life (as obtained by
linear interpolation) is indicated by the dashed lines. The decay in the absence of induction (-Tet) is in black lines, and after induction (+Tet) is by
grey lines (based on three experiments); each data point corresponds to the average, and standard deviations are indicated. The half-life was
calculated as described in Figure 4.
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suggesting the role of this factor in differential regulation
of gene expression of the parasite when cycling between its
two hosts. The stronger effect on splicing in the BSF is
most probably because more substrates are regulated by
hnRNP F/H at this stage. We cannot, however, rule out
the possibility that the robust effect is a consequence of a
secondary effect owing to perturbation of a factor(s) that
acts as a master regulator.

Genome-wide studies mapping of SL addition sites sug-
gested extensive alternative splicing changes throughout
the lifecycle of the parasite (73). Alternative splicing was
also shown recently to control protein localization,
enabling the generation of two isoforms of tRNA-
synthetase, a mitochondrial and cytoplasmic enzyme
(74). Trans-splicing must therefore be a regulated
process to generate this rich repertoire of alternative
spliced forms that are developmentally regulated.
However, little is known about factors that can participate
in such regulation. Early studies from our group suggested
that PTB proteins are involved in trans-splicing of a
distinct subset of transcripts having a C rich
polypyrimidine tract (17). Our current results suggest
that hnRNP F/H might be a good candidate for mediating
stage-specific splicing regulation. The protein is differen-
tially regulated, highly expressed in the BSF and affects
the level of a large number of genes at this stage. The
protein recognition site, AAGAA, is located around the
3’ splice site (mostly 50 nt upstream to 150 nt downstream)
in most substrates (Figure 5C). Such sites may serve as
exonic or intronic enhancer or silencers. The one
example provided in this study (Figure 7) supports the
role of the protein as a splicing repressor. However, the
extent of regulation on splicing awaits the iCLIP mapping
of the protein in sites located in the vicinity to AG splice
site, suggested in this study by the bioinformatic analysis.

The data presented here suggest that hnRNP F/H par-
ticipates in differential gene expression in both life stages.
There are only a few RBPs that were shown to affect dif-
ferential regulation during cycling between the hosts. One
such protein is TbZFP3, which acts as an anti-repressor to
stabilize EP1 procyclin and to promote its translation (75).
More recently, it was shown that the same protein regulates
mRNA stability of transcripts enriched in the stumpy from
of the parasite (76). ALBA3/4 proteins are present through-
out trypanosome development in the Tsetse fly, with the
striking exception of the transition stages, when the
parasite is found in the proventiculus region of the fly,
again demonstrating the involvement of an RBP in trypano-
some developmental regulation. These proteins do not
affect mRINA stability, but rather regulate translation (77).

Another protein that was shown to govern developmen-
tal gene expression is RBP10 (70). RBP10 does not bind
mRNAs directly, but its tethering to a reporter mRNA
inhibits translation and reduces to half the abundance of
bound mRNA. It was suggested that this factor may affect
the expression of regulatory proteins that are specific to
the procyclic form (70). Most recently, overexpression of a
single RBP (7hRBP6) in PCF was reported to induce
transformation of the parasites to infective metacyclic
forms expressing the variant surface glycoprotein. The
mechanism that induces this remarkable phenotype is
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currently unknown (78). As opposed to most of the
factors aforementioned, hnRNP F/H is unique because
it is the first protein that demonstrates dual function in
T. brucei, involved in both splicing and mRINA stability,
and regulates the differential expression of genes in both
lifecycle stages, in some cases, even in opposite directions.

Interestingly, there is a significant overlap between the
genes shown to be regulated in the two lifecycle stages of
the parasite (69) and the genes regulated by hnRNP F/H
(Supplementary Material S4). A large number of the
stage-specific regulated genes by RBP10 are also regulated
by hnRNP F/H (Supplementary Material S4), suggesting
that the differential regulation is governed by the coopera-
tive action of several factors, which are required to orches-
trate the differentiation programming. Elimination or
overproduction of such factor(s) can change the balance
and induce or suppress stage-specific gene expression.
Sometimes, as in the case of ThRBP6, a single factor is
sufficient to induce the switch from PCF to metacyclic
trypanosomes (78).

The effect of hnRNP F/H on gene regulation might be
even more complex than demonstrated in this study. At
present, most of the differential stage-specific gene regula-
tion in trypanosomes is attributed to the coordinate
function of RBPs (12). However, the process might be
also governed by chromatin remodelling. Although
evidence was provided for regulation of gene expression
by chromatin remodelling, there is no report to date
demonstrating changes in chromatin modifications
between the two lifecycle stages of the parasite (1).
Recent studies have shown that splicing is connected to
chromatin remodelling, and proteins like PTB were shown
to orchestrate such cross-talk in mammals (79). Stage-
specific trans-splicing might be governed by chromatin re-
modelling, and the 7' brucei PTB as well as hnRNP F/H
may participate in such cross-talk. Indeed, hnRNP F/H
includes a domain present in BAF1/ABF1, which is a
chromatin-associated factor in yeast. This intriguing
observation should lead to experiments that search for
changes in chromatin modifications under hnRNP F/H
silencing and finding whether any of the chromatin modi-
fiers associate with hnRNP F/H.

Both trypanosome hnRNP proteins: hnRNP F/H (this
study) and PTB (hnRNP 1) (17), affect the transcriptome
at two levels, splicing and mRNA stability. In mammals, it
was found that PTB binds 10-fold more strongly to intron
sequences than to exons, and that the binding to exons is
always near the splice sites, suggesting a dominant role in
splicing regulation (80). In contrast to mammals, the
T. brucei PTBs were shown to directly affect not only
splicing but also mRNA stability. Thus, hnRNP proteins
in trypanosomes have acquired also a role in mRNA sta-
bility regulation (17). The binding of PTB as well as
hnRNP F/H to the 3’ UTR of genes regulates mRNA
stability; if this binding already takes place in the
nucleus, it may affect the splicing of the downstream
gene as well. Indeed, proteins of the hnRNP F/H family
were shown to affect polyadenylation in mammals (25).
As polyadenylation and frans-splicing are coupled in tryp-
anosomes, we can envision a scenario whereby the binding
of hnRNP F/H upstream to the poly (A) site, as suggested
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by the bioinformatics analysis (Figure 5), could interfere
with the cross-talk between the splicing and the
polyadenylation machineries and thus affect the trans-
splicing of the downstream gene. In addition, binding of
the hnRNP F/H around the 3’ splice site may not only
affect splicing but also affect mRINA stability. Recently, it
was demonstrated that alternative-spliced forms of
T. brucei tRNA synthase are regulated at the mRNA sta-
bility via specific sequences on the 5 UTR (74). Thus,
alternative splicing does not only create different proteins
but also generates different mRNAs, which differ in their
stability. Genome-wide mapping of both PTB- and
hnRNP F/H-binding sites should shed light on the distri-
bution of these proteins on mature and pre-mRNA
sequences and help define the precise contribution of
these factors to splicing and stability.

This study describes the role of a central RBP that regu-
lates stage-specific gene expression. We showed that
hnRNP F/H controls gene expression (often inversely) in
the two lifecycle stages, possibly by interacting with a dif-
ferent RBP at each stage. We are only at the earliest stages
of a full understanding of the regulatory circuits exerted
by this essential multifunctional factor, which may be
involved in regulating splicing, polyadenylation and
mRNA stability and might also orchestrate the inter-
actions with stage-specific chromatin remodelling events.
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